Estimation of Topological Dimension

نویسندگان

  • Douglas R. Hundley
  • Michael J. Kirby
چکیده

We present two extensions of the algorithm by Broomhead et al [2] which is based on the idea that singular values that scale linearly with the radius of the data ball can be exploited to develop algorithms for computing topological dimension and for detecting whether data models based on manifolds are appropriate. We present a geometric scaling property and dimensionality criterion that permit the automated application of the algorithm as well as a significant reduction in computational expense. For irregularly distributed data this approach can provide a detailed analysis of the structure of the data including an estimated dimension distribution function. We present our approach on several data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

Estimation of minimal chaotic attractor embedding dimension on the basis of matrix decomposition for biomedical signal processing

The theoretic ground of a local-topological method for defining a minimal attractor embedding dimension on the basis of matrix decomposition is proposed. The investigation of digital electrocardio signals using local-topological analysis of chaotic attractor trajectories is carried out. The computer confirmation of the theoretical results is presented.

متن کامل

On ( transfinite ) small inductive dimension of products ∗

In this paper we study the behavior of the (transfinite) small inductive dimension (trind) ind on finite products of topological spaces. In particular we essentially improve Toulmin’s estimation [T] of trind for Cartesian products.

متن کامل

First non-abelian cohomology of topological groups II

In this paper we introduce a new definition of the first non-abelian cohomology of topological groups.  We relate the cohomology of a normal subgroup $N$ of a topological group $G$ and the quotient $G/N$ to the cohomology of $G$. We get the inflation-restriction exact sequence. Also, we obtain a seven-term exact cohomology sequence up to dimension 2. We give an interpretation of the first non-a...

متن کامل

Estimators of Fractal Dimension: Assessing the Roughness of Time Series and Spatial Data

Abstract The fractal or Hausdorff dimension is a measure of roughness (or smoothness) for time series and spatial data. The graph of a smooth, differentiable surface indexed in Rd has topological and fractal dimension d. If the surface is non-differentiable and rough, the fractal dimension takes values between the topological dimension, d, and d + 1. We review and assess estimators of fractal d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003